
Automatically Identifying Shared Root Causes of Test Breakages
in SAP HANA

Gabin An∗
School of Computing, KAIST
Daejeon, Republic of Korea

agb94@kaist.ac.kr

Juyeon Yoon∗
School of Computing, KAIST
Daejeon, Republic of Korea
juyeon.yoon@kaist.ac.kr

Jeongju Sohn
SnT, University of Luxembourg

Luxembourg
jeongju.sohn@uni.lu

Jingun Hong
SAP Labs Korea

Seoul, Republic of Korea
jingun.hong@sap.com

Dongwon Hwang
SAP Labs Korea

Seoul, Republic of Korea
dong.won.hwang@sap.com

Shin Yoo
School of Computing, KAIST
Daejeon, Republic of Korea

shin.yoo@kaist.ac.kr

ABSTRACT
Continuous Integration (CI) of a large-scale software system such
as SAP HANA can produce a non-trivial number of test breakages.
Each breakage that newly occurs from daily runs needs to be man-
ually inspected, triaged, and eventually assigned to developers for
debugging. However, not all new breakages are unique, as some
test breakages would share the same root cause; in addition, human
errors can produce duplicate bug tickets for the same root cause.
An automated identification of breakages with shared root causes
will be able to significantly reduce the cost of the (typically manual)
post-breakage steps. This paper investigates multiple similarity
functions between test breakages to assist and automate the identi-
fication of test breakages that are caused by the same root cause.
We consider multiple information sources, such as static (i.e., the
code itself), historical (i.e., whether the test results have changed
in a similar way in the past), as well as dynamic (i.e., whether the
coverage of test cases are similar to each other), for the purpose
of such automation. We evaluate a total of 27 individual similarity
functions, using real-world CI data of SAP HANA from a six-month
period. Further, using these individual similarity functions as in-
put features, we construct a classification model that can predict
whether two test breakages share the same root cause or not. When
trained using ground truth labels extracted from the issue tracker
of SAP HANA, our model achieves an F1 score of 0.743 when eval-
uated using a set of unseen test breakages collected over three
months. Our results show that a classification model based on test
similarity functions can successfully support the bug triage stage
of a CI pipeline.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
∗These authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513051

KEYWORDS
Continuous Integration, Test Similarity, Root Cause Analysis

ACM Reference Format:
Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang,
and Shin Yoo. 2022. Automatically Identifying Shared Root Causes of Test
Breakages in SAP HANA. In 44nd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP ’22), May 21–29,
2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3510457.3513051

1 INTRODUCTION
SAP HANA is a large-scale in-memory, relational database man-
agement system, which has a large codebase that, as of October
2021, consists of more than 11MLoC across about 50K files that
are mostly written in C and C++. Its Continuous Integration (CI)
system performs post-submit testing [10] for the main branch on a
daily basis (hereafter, referred to as daily test run), in order to test all
code changes submitted during the day together. In each daily test
run, more than 3,000 test cases1 are chosen to be executed; some of
the executed tests would fail, either due to newly introduced faults,
or residual faults that have been revealed in earlier iterations but
are yet to be fixed. When a test case fails, the CI system re-executes
the test case three times to cater for test flakiness. If all three retest
attempts result in failures, the original failure is considered as a test
breakage; otherwise, it is classified as a flaky test [32].

Based on the test history collected in 2021, about 30 test break-
ages are produced by each daily test run on average: a single break-
age takes 6.5 days on average to fix. Part of the time-to-fix cost
is due to the test review process that follows every test breakage.
During the review, a human developer has to interpret the test
result to identify the root cause [37]. If the root cause is thought to
be a known one, the test that resulted in the breakage is added to
the corresponding and existing bug ticket; if it is considered a new
one, a new bug ticket is created and assigned to the corresponding
test. The bug can be assigned to the responsible developers only
after a bug ticket is assigned to the broken test case.

The review process is not fully automated and involves manual
interpretation and analysis of the test results. Some of the auto-
mated sub-tasks are costly as well: for example, each bug ticket
initiates the bisection of the repository history using the broken

1In SAP HANA, a test case refers to a test script that contains numerous atomic test
methods.

https://doi.org/10.1145/3510457.3513051
https://doi.org/10.1145/3510457.3513051
https://doi.org/10.1145/3510457.3513051

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang, and Shin Yoo

test cases in order to identify the bug introducing change. Many
test cases used in the post-submit testing stage are integration tests
with high initialisation and set-up costs. Consequently, bisection
based on these tests can also be extremely costly.

Given the current CI workflow of SAP HANA, any redundant
bug tickets would incur a large amount of unnecessary review
cost, both in terms of human effort (inspection and analysis) and
computational resource (bisection). However, redundant bug tickets
do occur. It is expected that a single bug can cause the breakages of
multiple test cases, so the mapping between bugs and test breakages
is clearly not one-to-one. Since the workflow currently rely on
manual inspection and analysis to identify the root cause, there
is room for human error, leading to duplicate and redundant bug
tickets: the issue tracker of SAP HANA actually anticipates this,
and allows duplicate bug tickets to be marked by developers.

To improve the efficiency of the overall CI pipeline, it would
greatly help if we can reduce the number of bug tickets generated,
while not losing any diagnostic capability of the post-submit test
stage. In this paper, we study a set of test similarity functions to eval-
uate whether they can serve as a reliable indicator of shared root
causes. The similarity functions we study are based on a range of in-
formation sources: static similarity based on source code similarity,
historical similarity based on the accumulative history of test result
changes, and dynamic similarity based on the similarities between
coverages achieved by test cases. First, using various configura-
tions, we evaluate a total of 27 similarity functions individually:
our results show that different similarity functions complement
each other. Based on this observation, we subsequently train a clas-
sification model using these similarity functions to produce input
features. An empirical evaluation of our classification model using
real CI test results of SAP HANA shows that it can classify whether
a pair of test cases share the same root cause or not with F1 score
of up to 0.743. We plan to integrate the studied similarity functions
and classification models into the CI pipeline of SAP HANA.

The rest of the paper is organised as follows. Section 2 intro-
duces the similarity functions we study. Section 3 describes how we
construct a classification model using the input features obtained
with the similarity functions. Section 4 presents the configuration
of our empirical evaluation, whose results are discussed in Section 5.
Section 6 discusses threats to validity, and Section 7 presents related
work. Finally, Section 8 concludes.

Table 1: Example of how different tokenisers process the
identifier test_ldap_sessionfactory

Tokeniser Tokenisation Result

Elementary [‘test’, ‘ldap’, ‘sessionfactory’]

Ronin [‘test’, ‘ldap’, ‘session’, ‘factory’]

2 MEASURING SIMILARITY BETWEEN TEST
BREAKAGES

Given two test breakages, we assume that the similarity between
the two corresponding test cases is a good indicator of whether the

breakages share the same root cause or not. There are various infor-
mation sources that can be used to measure the similarity between
test cases. We broadly categorise the information sources we use
in this work into static, historical, and dynamic. This section will
describe each of the information sources and their corresponding
similarity functions in details.

2.1 Static Information
Static information is what can be obtained without running the
target program, e.g., the data from source code or the structure of
the software. In particular, we focus on the name of the test case as it
can directly reflect the purpose and the intention of the test case [7].
Suppose two test cases called testB*_O***_C***_2_FLAT_SQL and
testB*_O***_C***_2_CLASSIC_SQL break: we may suspect that
they share the same root cause, because their names are similar to
each other (names are partially masked for confidentiality). Con-
sequently, we use the string similarity between the names of two
test cases as a proxy for the similarity between their breakages.
There are numerous string similarity measures that quantify the
lexical similarity between two strings. We use the widely studied
Jaro-Winkler [41], which is a type of normalised edit distance, as
our baseline, because it is purely lexical and does not reflect any
semantic intention. We do not use Levenshtein distance as it cannot
be easily normalised [27].

Our primary choice of similarity measure between test case
names is a token-based approach, which first tokenise the given
strings and use the frequencies of tokens (sometimes also their or-
ders) to measure the similarity between the strings. The motivation
behind our choice is that test case names are typically composite
words that consist of multiple tokens, each reflecting either the
test purpose or the test target (e.g., test_ldap_sessionfactory).
There are various methods for tokenising source code identifiers
that have been suggested in literature [5, 11, 15, 21, 25]. Table 1
presents the example of tokenisation results using different source
code tokenisers in Spiral [21], a package that implements a range
of tokenisation algorithms for identifiers in source code. Ronin,
the most advanced tokeniser provided by Spiral, is based on
Samurai [11] tokenisation algorithm that regards token frequen-
cies mined from public source code repositories. By adding various
heuristic rules, Ronin recognise the terms in an identifier more
accurately than the elementary tokeniser. We refer to the set of all
resulting tokens as the vocabulary, 𝑉 .

After tokenisation, we vectorise the tokens for the similarity
computation. We use the widely-adopted Count (Term Frequency)
and TF-IDF (Term Frequency-Inverse Document Frequency) vec-
torisers [9, 35]. A test case name corresponds to a vector, whose
length is equal to the size of the vocabulary. For the token 𝑡𝑖 ∈ 𝑉 ,
the corresponding element in the vector representation, 𝑒𝑖 , is either
the token occurrence frequency (by the Count vectoriser), or the
token occurrence frequency times inverse document frequency (by
the TF-IDF vectoriser). The inverse document frequency is usually
defined as:

𝑖𝑑 𝑓 (𝑡) = 𝑙𝑜𝑔
1 + 𝑛

1 + 𝑑 𝑓 (𝑡) + 1

where 𝑑 𝑓 (𝑡) is the number of documents (here, test cases names)
that contain the token 𝑡 . The less frequently the term 𝑡 occurs,

Automatically Identifying Shared Root Causes of Test Breakages in SAP HANA ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Example of converting a 7-day test execution his-
tory into four types of vectors introduced by Golagha et
al. [13]. The three different values for the test result, P, F, and
N, refers to Passed, Failed, and Not executed, respectively.

Day 1 2 3 4 5 6 7

Test result of 𝑡 P F P N P P F

Failed vector, 𝑣 𝑓 (𝑡) 0 1 0 0 0 0 1
Passed vector, 𝑣𝑝 (𝑡) 1 0 1 0 1 1 0
Broken vector, 𝑣𝑏 (𝑡) 0 1 0 0 0 0 1

Repaired vector, 𝑣𝑟 (𝑡) 0 0 1 0 0 0 0

the higher the 𝑖𝑑 𝑓 (𝑡) value becomes. The TF-IDF vectoriser conse-
quently gives lower weights to the more common tokens, such as
‘test’, a commonly used prefix among test case names. Once we
vectorise the test case names, we measure the similarity between
them using Cosine Similarity, a widely-used text vector similarity
metric [36].

2.2 Historical Information
Recently, Golagha et al. [13] proposed a method to measure the
distance between test cases by exploiting the historical information
of the test cases. We assume that, if two test cases are similar to
each other in their purposes and intentions, they may have been not
only broken due to the same reason, but also repaired by the same
patch, in the past. Consequently, we also assume that the more
similar the histories of the two tests are, the higher the probability
of them sharing the same root cause is.

Following Golagha et al. [13], we first collect the execution his-
tory of test cases for the daily test runs within a specific time win-
dow (hereby referred to as history collection period). Subsequently,
we construct the Failed, Passed, Broken and Repaired vectors (𝑣 𝑓 ,
𝑣𝑝 , 𝑣𝑏 , 𝑣𝑟) based on the trajectories of the test results. Failed and
Passed vectors contain 1 whenever the corresponding previous test
results are failed (F) and passed (P), respectively, and 0 otherwise.
In comparison, Broken and Repaired vectors represent the transi-
tions in test results: the Broken vector contains 1 whenever the
corresponding previous test result is the result of a transition from
pass to fail, and 0 otherwise. Similarly, Repaired vector contains 1
whenever the corresponding previous test result is the result of a
transition from fail to pass, and 0 otherwise. Table 2 shows an ex-
ample of these historical vectors based on how test case 𝑡 changed
its results. Consider the Broken vector as an example: its element
for Day 2 is 1, because the 𝑡 changed from P (Day 1) to F (Day 2).

Once we extract these vectors from the given test history, we
can compute the similarity between two test cases based on each
of these vectors. We actually consider two types of similarity: one
is the average of Failed and Passed vector similarities between two
test cases (𝑠𝑓 𝑝), and the other is the average of Broken and Repair
vector similarities between the two test cases (𝑠𝑏𝑟), where 𝑠𝑖𝑚 can
be any similarity metric between binary vectors:

𝑠𝑓 𝑝 (𝑡, 𝑡 ′) = 0.5 · 𝑠𝑖𝑚(𝑣 𝑓 (𝑡), 𝑣 𝑓 (𝑡 ′)) + 0.5 · 𝑠𝑖𝑚(𝑣𝑝 (𝑡), 𝑣𝑝 (𝑡 ′)) (1)

𝑠𝑏𝑟 (𝑡, 𝑡 ′) = 0.5 · 𝑠𝑖𝑚(𝑣𝑏 (𝑡), 𝑣𝑏 (𝑡 ′)) + 0.5 · 𝑠𝑖𝑚(𝑣𝑟 (𝑡), 𝑣𝑟 (𝑡 ′)) (2)

2.3 Dynamic Information
Following many existing studies that aim to measure similarities
between test cases (such as failure clustering [12, 22, 34] or identifi-
cation of coincidental correctness [28, 40]), we use code coverage to
measure the similarity between two test breakages. Our rationale is
that, if the coverages are similar, two test cases must have a similar
intention and, consequently, are more likely to fail due to the same
root cause.

Typically, the distance between test case coverages is measured
by computing the distance between the binary coverage vectors [14,
20, 39, 43] using set- or vector-distance metrics such as Jaccard,
Cosine, or Hamming. However, by representing each test case as
an individual vector or set, we lose the relative importance of each
program element. Given a binary coverage vector for a single fail-
ing test case, we can only assume that each covered element may
be equally contributing to the breakage. It is only when we also
consider the coverages of passing tests that the relative importance
of each covered elements becomes clearer (i.e., those also covered
frequently by passing test cases are less important when measuring
similarities between test breakages).

There are existingworks that try to incorporate information from
passing test cases by considering the results of fault localisation
when measuring similarities between test breakages [12, 22, 31].
Here, a test breakage is represented by the ranking of all program
elements according to their suspiciousness with respect to the break-
age [12]: if two test breakages share the same root cause, they will
also result in a similar distribution of suspiciousness scores across
the program. While this approach successfully incorporates the
information from passing test cases into the similarity between test
breakages, both the fault localisation and computation of distances
between rankings (via the Kendall-Tau distance [26]) turned out to
be too expensive to apply to SAP HANA. Our previous work [1]
showed that it takes several hours to compute the pairwise rank
distances between a few dozen failing test cases from a project with
about 40KLoC, rendering the approach impractical for our purpose.

To better capture the similarity between test breakage by incorpo-
rating information from passing test cases, we turn to our previous
work [1] that proposed a novel test similarity measure based on
the hypergraph modelling of coverage data: our results showed
that failure clustering using hypergraph-based test distance is more
accurate than those using other test distance functions, while being
much more computationally efficient. A hypergraph refers to a
graph whose edges can join any number of nodes, instead of only
two (these edges are called hyperedges) [2, 44]. We can convert a
coverage matrix into a hypergraph without any loss of informa-
tion, where each node corresponds to a test case, and each edge,
that represents a program element, joins test cases that executed
the program element. Figure 1 shows an example of converting a
coverage matrix into a hypergraph.

In a hypergraph, the linkage (similarity) between two nodes 𝑡
and 𝑡 ′ is usually defined as follows:

𝑙𝑖𝑛𝑘 (𝑡, 𝑡 ′) =
∑

𝑒∈𝐸𝑡
⋂

𝐸𝑡′

𝑤 (𝑒)
𝑑𝑒𝑔(𝑒) (3)

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang, and Shin Yoo

Coverage Matrix

T4

T3

T2

Hypergraph

T1
T2
T3

T1

T4

1 0 1 0 0 1
0 1 1 0 1 0

T5

1 1 0 0 0 1

1 1 0 0 1 1
1 0 0 1 0 1

T5

Breakages Coverage Vectors hyperedges

modelling

Figure 1: Example of converting a coverage matrix with five
test cases (three breakages) and six program elements into a
hypergraph with five nodes and six hyperedges

where 𝐸𝑡 is a set of hyperedges that join 𝑡 , and𝑤 (𝑒) and 𝑑𝑒𝑔(𝑒)
are the predefined weight value and the degree of the hyperedge 𝑒 ,
i.e., the number of nodes that 𝑒 joins, respectively. Assuming that
all hyperedges have equal weights, 1.0, the linkage between two
nodes is the sum of the reciprocal degrees of hyperedges that join
both of the nodes. Consequently, a higher degree of an edge leads to
a lower contribution to the linkage value, i.e., more commonly cov-
ered program elements have less impact on the similarity between
test coverages. Since the hypergraph-based test similarity uses the
coverage of passing test cases as well as the failing test cases, it
can reduce the impact that program elements commonly covered
by passing test cases have on the test similarity, unlike the set and
vector-based similarity metrics that only consider coverages of fail-
ing test cases. In our study, we use the normalised version of the
node linkage value, nlink, as a similarity between test breakages:

𝑛𝑙𝑖𝑛𝑘 (𝑡, 𝑡 ′) = 1
2

(
𝑙𝑖𝑛𝑘 (𝑡, 𝑡 ′)
𝑙𝑖𝑛𝑘 (𝑡, 𝑡) + 𝑙𝑖𝑛𝑘 (𝑡, 𝑡 ′)

𝑙𝑖𝑛𝑘 (𝑡 ′, 𝑡 ′)

)
(4)

If two tests 𝑡 and 𝑡 ′ do not share any program elements in their
coverages, the 𝑛𝑙𝑖𝑛𝑘 (𝑡, 𝑡 ′) value becomes 0.0; if two tests have ex-
actly the same coverage, the 𝑛𝑙𝑖𝑛𝑘 (𝑡, 𝑡 ′) value becomes 1.0.

Another benefit of hypergraph-based test similarity in the in-
dustrial context is its computational efficiency: it takes only about
1.0 second on average to compute the pairwise similarity between
every test breakages from a daily test run of SAP HANA. Please
refer to our previous work regarding the hypergraph modelling,
linkage computation and normalisation [1].

3 LEARNING A UNIFIED CLASSIFIER
Section 2 described similarity functions for test breakages based
on three different information sources: static, historical, and dy-
namic. Since these information sources are mutually exclusive, we
argue that using all information sources together will help iden-
tify shared root causes of test breakages better, when compared
to using a single information source. To use multiple similarity
functions together, we construct a binary classification model that
takes multiple similarity functions between two test breakages as
input features and predicts whether they share the same root cause.

We use a basic Multi-layer Perceptron (MLP), shown in Figure 2,
as our classification model. Given a set of test breakage pairs, we
train the MLP model using features obtained from the similarity

feature

1

feature

2

feature

3

feature

d

f(X)

Input

Layer

Hidden

Layer

Output

Layer

Relevant (1)

/ Irrelevant (0)

similarity

1

similarity

n

similarity

2

similarity

3

similarity

n-1

Fe
at

ur
e

Ex
tr

ac
tio

n

Features (X)

Similiarity
Values

Figure 2: An MLP Classifier with one hidden layer that pre-
dicts the relevance of test pairs using input similarities

functions and the ground-truth relevance labels. A relevance label
indicates whether two tests share the same root cause or not, and is
retrieved from the existing bug ticket information (see Section 4.2.1
for the way ground truths are collected).

4 EXPERIMENTAL SETUP ON SAP HANA
We evaluate the performance of the similarity functions and the
classification model in terms of predicting the relevance between
test breakages in SAP HANA. This section presents the research
questions and describes our experimental settings including the
evaluation dataset, the similarity function configurations, the details
of our classification model, and the evaluation metrics.

4.1 Research Questions
We ask the following three research questions:

• RQ1. Similarity Function Effectiveness: How effective is
each similarity function when used to classify the relevance
of test breakage pairs?

• RQ2. Similarity Function Uniqueness: How complemen-
tary are the similarity functions to each other?

• RQ3. Model Effectiveness: How effective is the unified
model incorporating all information sources when compared
to using only a single similarity function?

4.2 Evaluation Dataset Construction
From SAP HANA CI, we mine test result trajectories from the
period of six months, February to July 2021. For each daily test run,
we consider all pairs of test breakages from the run and predict
whether they share the same root cause or not. The following
subsections will describe the ground-truth collection procedure
and the construction of training/test datasets.

4.2.1 Collecting Ground-Truth Labels. To evaluate our classifica-
tion model, we need to establish the ground truth relationships
between test breakages, i.e., the pairs that actually share the same
root cause. We use the information recorded with the bug tickets to

Automatically Identifying Shared Root Causes of Test Breakages in SAP HANA ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Statistics of the evaluation dataset

Dataset Month # total pairs # relevant pairs % relevant

Training

2 7,922 149 1.88%
3 3,806 72 1.89%
4 8,005 298 3.72%

Total 19,733 519 2.63%

Test

5 6,767 126 1.86%
6 6,621 61 0.92%
7 4,205 25 0.59%

Total 17,593 212 1.21%

establish ground truth relationships between test pairs. A bug ticket
is manually generated to represent a single, unique bug that is yet
to be resolved, and is assigned to multiple tests whose breakages
share the same root cause. Consequently, it represents the human
interpretation of the test results as well as the mapping between
root causes and test breakages.

A bug ticket can be assigned to a test in two different scenarios.
One is when the developers assign one of the existing tickets that
represent known yet unresolved bugs, to the test that resulted in a
newly observed breakage. The other is when a test breakage reveals
a new bug, forcing the developer to issue a new bug ticket and
assign it to the test case that resulted in the breakage.

Since we only have a mapping between bug tickets and test cases,
however, it may not be clear which actual breakages are connected
to a specific bug ticket. We use the following heuristic to determine
whether a bug ticket 𝑡 is linked to a specific test breakage 𝑏:

• A bug ticket 𝑡 already exists, is assigned to a test case 𝑐 , and
remain unresolved when 𝑐 results in a breakage 𝑏, or

• A bug ticket 𝑡 is newly created and assigned to test case 𝑐
within seven days of the breakage 𝑏 of test 𝑐

The seven-day window reflects the maximum duration typically
required to assign bug tickets to newly occurring test breakages
in the SAP HANA CI workflow. Although each bug ticket should
ideally represent a single unique bug, it is also possible that bug
tickets are duplicated (i.e., created multiple times for the same bug).
This is because bug duplicate detection is currently performed
manually and, therefore, is susceptible to human error. In case a
bug ticket is identified as a duplicate by a human developer, it is
marked as such on the issue tracker: we consider all duplicates as
the same bug ticket based on this marking.

4.2.2 Splitting Training/Test Datasets. The collected six-month test
history data is divided into training and test datasets. The data from
the preceding three months (from February to April) are used as
training data, while the data of the remaining three months (from
May to July) are used as test data for the performance evaluation
of unseen data. Table 3 shows the summary of dataset statistics.

4.3 Configuration and Implementation Details
This section describes the experimental settings, implementation
details for the similarity functions, and the classification model.

4.3.1 Similarity Functions. Table 4 shows the possible configura-
tion settings for each information source in our experiment. The

Table 4: Configuration components of a similarity function
for each information source

Source Component Values

Static (Token) Tokeniser Elementary, Ronin

Vectoriser Count, TF-IDF

Similarity Measure Cosine

Static (Edit) Similarity Measure Jaro-Winkler

Historical Collection Period 90, 180, 365 days

(Failed/Passed) Similarity Measure Cosine, Hamming, Jaccard

Historical Collection Period 90, 180, 365 days

(Broken/Repaired) Similarity Measure Cosine, Hamming, Jaccard

Dynamic Similarity Measure Cosine, Hamming, Jaccard, nlink [1]

‘Component’ and ‘Values’ columns denote the name and the possi-
ble values of each configurable component, respectively.

For the token-based static information source, we can vary the
tokeniser and the vectoriser, for which we use the open-source
implementations of Spiral2 and sklearn-0.24.1, respectively.
For Jaro-Winkler string similarity, we use the implementation from
an open-source Python library jellyfish 3 that provides a set of
string comparison algorithms.

For the historical information source, we can vary the duration
of the historical time window, as well as the similarity metric 𝑠𝑖𝑚
used by 𝑠𝑓 𝑝 and 𝑠𝑏𝑟 , each defined in Equation 1 and 2 in Section 2.2.
We use three window lengths of 90, 180, and 365 days to evaluate
its impact on classification performance. Since historical vectors
are binary, we employ the Hamming and Jaccard similarity metrics
in addition to the Cosine similarity metric as the vector similarity
metric 𝑠𝑖𝑚, and use the implementation provided by scipy-1.4.1.

For the dynamic information source, we use the hypergraph-
based similarity score, 𝑛𝑙𝑖𝑛𝑘 , in addition to the three baselines,
Cosine, Hamming, and Jaccard, that can compute the similarity
between two binary coverage vectors. Note that, to save the cost
of daily test runs, the CI pipeline of SAP HANA collects cover-
age weekly rather than daily. Therefore, we use the most recently
measured coverage data for each test case when needed. Through-
out this paper, we use a file-level coverage matrix that contains
information about which test cases execute which files.

Overall, we use a total of 27 different similarity functions (2 ·2+1
from Static, 2 ·3 ·3 from Historical, and 4 from Dynamic) to evaluate
all configuration combinations from each information source.

4.3.2 A Classification Model. Our base MLP classification model
is a vanilla MLP classifier [18] that contains one fully-connected
hidden layer with 100 neurons: we use the implementation from
sklearn-0.24.1 with the default parameter setting. We train the
model for the maximum of 300 epochs with the learning rate of
0.001: our early-stopping criterion is to stop when there is no im-
provement over ten consecutive epochs.

In addition, to reduce the chance of overfitting, we also use a
bagging (bootstrap aggregating) [4] ensemble model that aggre-
gates the prediction output from 𝑛 different base estimators trained
2https://github.com/casics/spiral
3https://github.com/jamesturk/jellyfish

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang, and Shin Yoo

independently from each other. Specifically, we use a bagging-MLP
model consisting of ten vanilla MLP classifiers, each trained with
random subsets of the samples and features drawn from the original
training dataset with replacement: we bootstrap until we have the
same number of samples and features as the original data. To min-
imise the effect of randomness, we train a total of ten models with
different random seeds for both the single MLP and bagging-MLP
models, and report the average and the standard deviation.

We use the following feature selection and extraction schemes [16]:
(1) All Features uses all available similarity functions from each

information source, i.e., a total of 27 similarity functions.
(2) Best Features uses only the best performing configuration

of the similarity function for each information source. Since
there are two types of historical similarity, Failed/Passed and
Broken/Repaired, we use the best performing configuration
for each. Overall, four similarity values are used: one from
Static, two from Historical, and one from Dynamic.

(3) PCA Features uses the 𝑑-dimensional features extracted us-
ing Principal Components Analysis (PCA) [42]. PCA is a
widely-used dimensionality reduction technique that reduces
the number of features while retaining maximum informa-
tion. It computes the principal components of features and
uses them as a new basis for the feature space. We set 𝑑 to
{4, 10, 16, 22, 27}, where 4 is equal to the number of the best
features, and 27 is equal to the number of all features.

4.4 Evaluation Metrics
We use commonly-used evaluation metrics for binary classifica-
tion [19] such as precision, recall, and F1 (the harmonic mean of
precision and recall). We also use the following two advanced evalu-
ation metrics that summarise the Receiver Operating Characteristic
(ROC) and Precision-Recall (PR) curves for a range of threshold
values into a single score [3, 8]:

• AUROC (Area Under the ROC Curve): An ROC curve is a
graph showing the performance of a classification model at
all classification thresholds in terms of True Positive Rate
and False Positive Rate4. In this study, AUROC measures
the area underneath the ROC curve from (0,0) to (1,1), as all
similarity values are normalised. The baseline for AUROC is
0.5 of a random binary classifier.

• AP (Average Precision): AP is the weighted mean of preci-
sion values at each threshold where the weight value is set to
the increase in recall from the previous threshold. Formally,
it is defined as

𝐴𝑃 =
∑
𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall value at the 𝑛th
threshold, respectively. Note that AP is one of the methods
for calculating the area under the PR curve (AUPRC). The
baseline for AP is the proportion of positive samples.

While AUROC is the same regardless of what the “positive” class
is, the AP value indicates how correctly a model handles positive
samples. As such, it may be more useful in our context, because

4TPR = TP/(TP+FN) and FPR = FP/(FP+TN)

Table 5: Prediction performance of each similarity function
on the training data. The baseline values of AUROC and AP
are 0.5 and 0.024, respectively. (F/P: Failed/Passed, B/R: Bro-
ken/Repaired)

Source Similarity function AUROC AP
configuration (B: 0.500) (B: 0.026)

Static
(Token)

Tokeniser Vectoriser

Elementary Count 0.913 0.673
Elementary TF-IDF 0.909 0.694

Ronin Count 0.918 0.680
Ronin TF-IDF 0.916 0.706

Static
(Edit)

Measure

Jaro-Winkler 0.894 0.578

Historical
(F/P)

Measure Period

Cosine 90 days 0.734 0.157
Cosine 180 days 0.731 0.163
Cosine 365 days 0.808 0.206
Hamming 90 days 0.811 0.149
Hamming 180 days 0.784 0.129
Hamming 365 days 0.724 0.081
Jaccard 90 days 0.814 0.154
Jaccard 180 days 0.809 0.169
Jaccard 365 days 0.786 0.185

Historical
(B/R)

Measure Period

Cosine 90 days 0.708 0.256
Cosine 180 days 0.792 0.367
Cosine 365 days 0.871 0.362

Hamming 90 days 0.695 0.074
Hamming 180 days 0.694 0.070
Hamming 365 days 0.714 0.053
Jaccard 90 days 0.860 0.115
Jaccard 180 days 0.903 0.208
Jaccard 365 days 0.875 0.294

Coverage

Measure

Cosine 0.866 0.545
Hamming 0.844 0.326
Jaccard 0.864 0.539

nlink (Eq. 4) 0.960 0.740

the proportion of positive samples (i.e., relevant test pairs) is sig-
nificantly lower than that of negative samples. This is important
because we will report the samples predicted as positive to the
human engineers.

5 EVALUATION RESULTS AND ANALYSIS
This section analyses the results of our empirical evaluation.

5.1 RQ1: Effectiveness of Similarity Functions
Table 5 presents the AUROC andAP scores obtained by all similarity
functions against our training data. All similarity functions have

Automatically Identifying Shared Root Causes of Test Breakages in SAP HANA ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Static-Ronin-TFIDF-Cosine: F1 = 0.479 (threshold = 0.426)
Coverage-nlink: F1 = 0.468 (threshold = 0.608)
Historical-Failed/Passed-365-Cosine: F1 = 0.114 (threshold = 0.735)
Historical-Broken/Repaired-180-Cosine: F1 = 0.092 (threshold = 0.266)

Figure 3: F1 scores of each similarity function at different
thresholds (calculated on the test data)

higher scores than the baseline scores of AUROC and AP, 0.5 and
0.026, respectively. Among them, the coverage-based similarity
function, nlink [1], significantly outperforms all other similarity
functions in terms of both AUROC and AP. In comparison, the other
coverage-based similarity functions, Cosine, Hamming, and Jaccard,
all show poorer classification performance than the static-based
similarity functions as well as nlink.

The AP values show that static information can identify the rele-
vant pairs more accurately than historical information. When mea-
suring the similarity between the test names, the token-based simi-
larity functions outperform Jaro-Winkler, an edit-distance-based
baseline. Especially, the more advanced tokeniser, Ronin, combined
with the TF-IDF term-weighting scheme, achieves the highest AP
value. Among the historical similarity functions, those with the Co-
sine and Jaccard similarity metrics perform better than those with
Hamming. When measuring failed/passed similarity, the longer the
collection period is, the better the performance becomes in general,
except for broken/repaired similarity for which no such correlation
is observed.

From these evaluation results on the training data, we choose the
best performing similarity function with the highest AP value from
each information source. According to the previous work [13] that
first proposed these history-based distance metrics, Failed/Passed
and Broken/ Repaired capture different characteristics. Thus, we de-
cide to select one from each category for the following experiments.
The four selected similarity functions that represent each category
are highlighted with a grey background colour in Table 5. Using
the training data, we learn the optimal similarity threshold for each
selected similarity function. We use the widely used method of
choosing a threshold with the maximum F1 score, i.e., the threshold
that achieves the best balance between precision and recall [29]. For
example, nlink has the maximum F1 score, 0.733, at the threshold
of 0.608 on the training data.

We evaluate the four selected functions on the test data: Figure 3
shows the F1 scores of each function at different thresholds against
the test data. Each dotted line represents the F1 score at the learnt
threshold on the training data, where the values are also shown
in the graph legend. The results show that the maximum F1 score

12

11

30

28

3

0

0

42

29

2

64

14

80

0

120

True Positive Pairs (Training Set)

0

0

2

23

10

5

48

0

28

4

745

2

218

64

18065

True Negative Pairs (Training Set)

Coverage
Historical (F/P)
Historical (B/R)
Static

Figure 4: Venn diagram of True Positive (TP) and True
Negative (TN) samples on the training data with the best-
performing similarity functions selected based on the AP
values (the threshold with the maximum F1 score is used
for each similarity function)

of nlink, 0.646, is higher than that of other similarity functions.
However, when using the learnt threshold, the static and coverage
similarity functions shows almost the same F1 scores, 0.479 and
0.468. From the graph, we can observe a considerable discrepancy
between the learnt threshold and the best-performing threshold on
the test data, except for the passed/failed similarity function. This
motivates us to develop a more elaborated classification model that
better generalises to unseen data.

Answer to RQ1: The coverage-base similarity function, nlink,
significantly outperforms all other similarity functions, achiev-
ing AUROC of 0.960 and AP of 0.740, when predicting the rel-
evance between test breakages. Based on the best-performing
similarity function from each information source, the relative
effectiveness of each information source is Coverage > Static >
Historical (B/R) > Historical (F/P).

5.2 RQ2: Uniqueness of Similarity Functions
Venn Diagram in Figure 4 shows True Positive (TP) and True Neg-
ative (TN) pairs in the training data that each similarity function
correctly classifies with its optimal threshold. In terms of TP, we
can see that certain pairs are correctly classified only by a specific
similarity function and nothing else. For example, using the cov-
erage similarity (nlink) enables us to find 42 relevant pairs that
are found by no other functions. A concrete example is shown in
Figure 5: given the test breakage (in the red rectangle box) from a
daily test run, if we rank all other breakages in the test run in the
descending order of their nlink similarities to the given breakage,
the top-ranked test case actually shares the same bug ticket with
the target breakage and is classified as relevant with the optimal
threshold of nlink, which is 0.608. Since those two test case names
have no common tokens (except for "test"), it would be difficult
for static similarity functions to capture the similarity.

While the coverage-based similarity function, nlink, correctly
classifies the most TP samples uniquely, the TN results show that
only the Failed/Passed historical similarity function could correctly
identify irrelevant pairs that no one else could find, despite produc-
ing the lowest AP values among the four functions.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang, and Shin Yoo

1ƗÖĿťķā�ðŽĢķù�̅ː˖˓˒˗˓˗

O@NO�¥¥¥¥¥¥¥¥¥¥�¥¥¥¥¥¥¥

¼� O@NO�¥¥¥¥¥¥¥�¥¥¥¥¥�¥¥¥¥¥¥¥¥¥¥��IGDIF�NDHDG<MDOT��»�Ã¿½ �

½� O@NO�¥¥¥¥¥¥¥�¥¥¥¥¥�¥¥¥¥¥¥��IGDIF�NDHDG<MDOT��»�ÀÄÀ

¾� NPDO@�¥¥�¥¥¥¥¥¥¥­�¥¥¥¥��IGDIF�NDHDG<MDOT��»�¿»¼

¿� O@NO�¥¥¥¥¥¥¥¥�¥¥�¥¥¥¥¥�¥¥¥�¥¥¥¥¥¥¥¥¥¥­�¥¥¥�¥¥¥¥¥¥¥��IGDIF�NDHDG<MDOT��»�¾ÃÀ

À� O@NO�¥¥¥¥¥¥¥�¥¥¥¥¥¥¥�¥¥¥¥¥¥¥¥��IGDIF�NDHDG<MDOT��»�¾Á¼

Á� ���

�PB������½¥¥¥¥¥

Figure 5: An example of a test breakage pair that is cor-
rectly classified only by the coverage-based similarity func-
tion, nlink. Due to confidentiality issues, the test names are
partially masked. The unmasked character represents the
first character of each token.

Answer to RQ2: The results of the TP and TN samples show
that none of the similarity functions is completely dominated
by other functions, which means that the similarity functions
from different information sources can complement each other.
Together with the results of RQ1, our findings for RQ2 clearly
demonstrate the need for a unified classification model that
incorporates all sources of information.

5.3 RQ3: Effectiveness of Classification Model
Figure 6 shows the F1 scores of the MLP-based unified models
for different feature extraction strategies (Section 4.3.2) against
the test data. For each feature strategy, there are two bars, each
showing the performance of the MLP classifier with, and without,
bagging, respectively. For easier comparison with the previous
results, Figure 6 also shows the F1 scores of the two best performing
similarity functions, taken from Figure 4, with horizontal lines.

Among the studied models, the bagging ensemble model with
PCA feature extraction (𝑑 = 16) performs the best, achieving an F1
score of 0.743: this is at least 55% improvement over the highest
F1 score achieved by a single similarity function when using the
learnt threshold, 0.479 (as shown in Figure 3). Note that the F1 score
of 0.743 achieved by the bagging ensemble model is also higher
than the highest F1 score achieved by a single similarity function
at any threshold, which is 0.646. Overall, for almost all feature
extraction strategies, the bagging ensemble model shows better
performance than the single MLP model in terms of the F1 scores.
The results show that the use of multiple base estimators can reduce
the potential for overfitting. Moreover, the narrower confidence
intervals of the bagging models suggest that their performance is
relatively stable than that of single models.

In terms of the feature extraction methods, the PCA Features
strategy tends to outperform all other strategies. This is because
PCA reduces overfitting so that the model can generalise better.
Our results show that reducing the dimensionality by a moderate
amount, from 27 to 16, can effectively reduce the noise in the train-
ing data without losing much information. However, since more
dimensionality reduction naturally leads to more information loss,
PCA with the smallest feature number, 4, performs worse than the
PCA with the larger feature number, as well as the All Features
strategy.

Table 6: Mean (standard deviation in parentheses) of preci-
sion and recall for each feature extraction strategy, with or
without bagging. The highest precision and recall for MLP
and Bagging_MLP are typeset in bold respectively.

Features MLP Bagging_MLP

Precision Recall Precision Recall

Best 0.630 (0.047) 0.514 (0.023) 0.613 (0.019) 0.594 (0.005)
PCA_4 0.829 (0.076) 0.481 (0.045) 0.769 (0.016) 0.534 (0.006)
PCA_10 0.792 (0.100) 0.567 (0.070) 0.799 (0.020) 0.592 (0.002)
PCA_16 0.769 (0.034) 0.628 (0.014) 0.884 (0.019) 0.639 (0.006)
PCA_22 0.723 (0.043) 0.635 (0.007) 0.786 (0.020) 0.644 (0.002)
PCA_27 0.754 (0.024) 0.682 (0.026) 0.770 (0.020) 0.640 (0.007)
All 0.734 (0.066) 0.561 (0.095) 0.705 (0.018) 0.641 (0.003)

Table 6 presents the average precision and recall values from
ten models, each trained with a different random seed, per each
model configuration. PCA_16 achieves the highest average preci-
sion, which is 0.884. Note that users can further adjust the trade-off
between precision and recall as needed by shifting the classification
threshold of a model.

Answer to RQ3: A classification model that uses multiple sim-
ilarity functions can significantly outperform single similarity
functions. When using the 16 features extracted by PCA, the
MLP classifier with the bagging ensemble method achieves the
F1 score of 0.743 against the test set, which is significantly higher
than the baseline F1 score, 0.479, achieved by the Static-Ronin-
TFIDF-Cosine configuration using the learnt threshold.

6 THREATS TO VALIDITY
Threats to internal validity concern factors that could have affected
precise observation and measurement of the effects achieved by our
proposed technique. Our heuristic used to extract the ground truth
test relationships from the vast logs of bug tickets and test results
may not be 100% accurate, given the margin or human error as well
as the hyperparameter for the bug ticket creation window (seven
days). However, since we ultimately aim to automate and assist
the debugging activities of human developers, aiming to match
their root cause analysis as closely as possible remains a valuable
goal. Further, all bug tickets, including the ones in our test set, have
gone through further inspection to identify the bug introducing
change. Consequently, we think the test relationship extracted from
existing bug tickets are reasonably accurate. We use open-source
implementations that withstood public scrutiny whenever possible,
e.g., for tokenisation [21] and classification [33].

Threats to external validity concern factors that may limit the
generalisation of our results. With this work, our aim is not to
generalise widely, but to specifically assist the development process
of SAP HANA.While all the studied similarity functions are generic
(i.e., their design is not specific to SAP HANA), we cannot expect
these functions to perform similarly when applied to projects with
completely different histories and contexts. Furthermore, even with
SAP HANA, a fundamental change in test trajectories caused by
major version changes or foundational architectural redesigns may

Automatically Identifying Shared Root Causes of Test Breakages in SAP HANA ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Best PCA_4 PCA_10 PCA_16 PCA_22 PCA_27 All
Features

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
F1

 S
co

re

0.564
0.605

0.652
0.691 0.676

0.716

0.627
0.603

0.630

0.680

0.742
0.708 0.698

0.671

Static-Ronin-TFIDF-Cosine (w/ learnt th. = 0.426)
Coverage-nlink (w/ learnt th. = 0.608)

MLP
Bagging_MLP

Figure 6: F1 scores of the models using different feature extraction strategies against the test data. Note that the 𝑦-axis ranges
from 0.40 to 0.85. The red and blue horizontal lines represent the F1 scores for the relevance classifications when using the
Static-Ronin-TFIDF-Cosine and Coverage-nlink similarities, respectively, with learnt thresholds. Each error bar indicates the
95% confidence interval.

result in discontinuity in the studied information sources. Only a
longitudinal study using additional real-world data can provide a
more accurate assessment of our proposed approach.

Threats to construct validity arise when the values we observe
and report do not actually reflect the properties we aim to measure.
All evaluation metrics we use are widely used standard evaluation
metrics for classification tasks, minimising this threat.

7 RELATEDWORK
Our work is related to several existing approaches in the area of
failure clustering. Podgurski et al. [34] showed that certain failures
share the same root causes, and clustering those failures facilitates
further steps of diagnosing faults. They use coverage profiles as
features to perform clustering analysis as well as multivariate visu-
alisation of failures. Jones et al. [22] represented a failing test case,
(i.e., a test breakage), as a set of program statements whose Taran-
tula suspiciousness scores [23] are higher than the given threshold;
subsequently, failing test cases are clustered using the Jaccard simi-
larity between the sets of high suspiciousness statements. Similarly,
Liu et al. [30] ranked program statements according to the likeli-
hood of being faulty, and used the weighted Kendall-Tau distance
between rankings to cluster failing test cases. Recently, Gao and
Wong proposedMSeer [12], which extends the rank-based approach
of Liu et al. with an improved Kendall-tau distance metric.

Golagha et al. [13] proposed a failure clustering method using
non-code features such as test history, and evaluated them in the
hardware-in-the-loop testing of automotive software. While Go-
lagha et al. simply use the weighted sum of the features they studied
to perform agglomerative clustering, we focus on classification of
the relevance between two test breakages based on a wider range
of features, including test coverage and lexical information from
the source code. Moreover, our work directly compares the perfor-
mance of individual similarity functions as a predictor of shared
root causes. We will consider clustering of test breakages based on
the classification results as future work.

Our previous work [1] introduced hypergraph-based coverage
representation that allows efficient calculation of pairwise similar-
ity of tests. An empirical evaluation on Defects4J [24] showed that

hypergraph-based similarity, nlink, can produce accurate failure
clusterings when used with agglomerative clustering. This paper ap-
plies and evaluates the hypergraph-based coverage representation
in an industrial context of SAP HANA.

Test similarity measures have been studied in the context of
test case selection and prioritisation, with the aim of improving
diversity among test cases. Thomas et al. [38] proposed a static
black-box test prioritisation technique that applies topic modelling
to the source code of test cases: the similarity between topics are
subsequently used to select test cases with distinct functionalities.
Historical information has also been shown to be effective when
calculating test similarity in rapid release environments for test
prioritisation [17]. Chen et al. [6] prioritised a large pool of fuzzer-
generated test inputs for compiler testing, by measuring distances
between inputs using both coverage profiles and lexical information
from the test input (i.e., source code input to the compiler): the aim
is to ensure high diversity early in the test execution. Our context
differs from existing work in that we perform white-box testing of
SAP HANA with a focus on identifying shared root causes behind
test breakages.

8 CONCLUSION
We propose a technique that can determine whether two test break-
ages share the same root cause to improve the debugging efficiency
in SAP HANA. Our technique uses a range of information sources,
including static, historical, and dynamic information from test cases
and their executions. We show that, although using a single simi-
larity function alone does not generalise well to previously unseen
data, various similarity functions from different information sources
can complement each other. This motivates us to train a unified clas-
sification model that uses multiple similarity functions as features.
We adopt PCA-based feature extraction and a bagging ensemble
method to reduce overfitting. When evaluated using three-month
CI data from SAP HANA, our classification model achieves the F1
score of 0.743, which is at least 55% improvement over a single simi-
larity function.We plan to implement the shared root cause analysis
to the CI pipeline of SAP HANA to improve the post-submit testing
process.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Gabin An, Juyeon Yoon, Jeongju Sohn, Jingun Hong, Dongwon Hwang, and Shin Yoo

ACKNOWLEDGMENTS
Gabin An, Juyeon Yoon, and Shin Yoo are supported by SAP Labs
Korea, as well as by National Research Foundation of Korea (NRF)
Grant (NRF-2020R1A2C1013629) and Institute for Information &
communications Technology Promotion grant funded by the Ko-
rean government (MSIT) (No.2021-0-01001).

REFERENCES
[1] Gabin An, Juyeon Yoon, Joyce Jiyoung Whang, and Shin Yoo. 2021. Improving

Test Distance for Failure Clustering with Hypergraph Modelling. arXiv preprint
arXiv:2104.10360 (2021).

[2] Claude Berge. 1984. Hypergraphs: combinatorics of finite sets. Vol. 45. Elsevier.
[3] Andrew P Bradley. 1997. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),
1145–1159.

[4] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[5] Simon Butler. 2012. Mining Java class identifier naming conventions. In 2012

34th International Conference on Software Engineering (ICSE). IEEE, 1641–1643.
[6] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric

Eide, and John Regehr. 2013. Taming compiler fuzzers. In Proceedings of the 34th
ACM SIGPLAN conference on Programming language design and implementation.
197–208.

[7] Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating Unit Tests
with Descriptive Names or: Would You Name Your Children Thing1 and Thing2?.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). Association for Computing Machinery, New
York, NY, USA, 57–67.

[8] Jesse Davis and Mark Goadrich. 2006. The relationship between Precision-Recall
and ROC curves. In Proceedings of the 23rd international conference on Machine
learning. 233–240.

[9] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella,
and Sebastiano Panichella. 2012. Using IR methods for labeling source code
artifacts: Is it worthwhile?. In 2012 20th IEEE International Conference on Program
Comprehension (ICPC). IEEE, 193–202.

[10] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 235–245.

[11] Eric Enslen, Emily Hill, Lori Pollock, and K Vijay-Shanker. 2009. Mining source
code to automatically split identifiers for software analysis. In 2009 6th IEEE
International Working Conference on Mining Software Repositories. IEEE, 71–80.

[12] Ruizhi Gao and W Eric Wong. 2017. MSeer—An advanced technique for locating
multiple bugs in parallel. IEEE Transactions on Software Engineering 45, 3 (2017),
301–318.

[13] Mojdeh Golagha, Constantin Lehnhoff, Alexander Pretschner, and Hermann
Ilmberger. 2019. Failure clustering without coverage. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 134–
145.

[14] Mojdeh Golagha, Alexander Pretschner, Dominik Fisch, and Roman Nagy. 2017.
Reducing failure analysis time: An industrial evaluation. In 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP). IEEE, 293–302.

[15] Samir Gupta, Sana Malik, Lori Pollock, and K Vijay-Shanker. 2013. Part-of-speech
tagging of program identifiers for improved text-based software engineering
tools. In 2013 21st International Conference on Program Comprehension (ICPC).
IEEE, 3–12.

[16] Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and feature
selection. Journal of machine learning research 3, Mar (2003), 1157–1182.

[17] Hadi Hemmati, Zhihan Fang,Mika VMäntylä, and BramAdams. 2017. Prioritizing
manual test cases in rapid release environments. Software Testing, Verification
and Reliability 27, 6 (2017), e1609.

[18] Geoffrey E Hinton. 1990. Connectionist learning procedures. InMachine learning.
Elsevier, 555–610.

[19] Mohammad Hossin and Md Nasir Sulaiman. 2015. A review on evaluation
metrics for data classification evaluations. International journal of data mining &
knowledge management process 5, 2 (2015), 1.

[20] Yanqin Huang, Junhua Wu, Yang Feng, Zhenyu Chen, and Zhihong Zhao. 2013.
An empirical study on clustering for isolating bugs in fault localization. In 2013
IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 138–143.

[21] Michael Hucka. 2018. Spiral: splitters for identifiers in source code files. Journal
of Open Source Software 3, 24 (2018), 653.

[22] James A Jones, James F Bowring, and Mary Jean Harrold. 2007. Debugging in
parallel. In Proceedings of the 2007 international symposium on Software testing

and analysis. 16–26.
[23] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-

tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273–282.

[24] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[25] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and An-
drea Janes. 2020. Big code!= big vocabulary: Open-vocabulary models for source
code. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 1073–1085.

[26] Maurice George Kendall. 1948. Rank correlation methods. (1948).
[27] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.
[28] Yihan Li and Chao Liu. 2012. Using cluster analysis to identify coincidental

correctness in fault localization. In 2012 Fourth International Conference on Com-
putational and Information Sciences. IEEE, 357–360.

[29] Zachary C Lipton, Charles Elkan, and Balakrishnan Naryanaswamy. 2014. Op-
timal thresholding of classifiers to maximize F1 measure. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
225–239.

[30] Chao Liu and Jiawei Han. 2006. Failure proximity: a fault localization-based
approach. In Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering. 46–56.

[31] Chao Liu, Xiangyu Zhang, and Jiawei Han. 2008. A systematic study of failure
proximity. IEEE Transactions on Software Engineering 34, 6 (2008), 826–843.

[32] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and DarkoMarinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 643–653.

[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[34] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang
Sun, and Bin Wang. 2003. Automated support for classifying software failure
reports. In 25th International Conference on Software Engineering, 2003. Proceedings.
IEEE, 465–475.

[35] Claude Sammut and Geoffrey I. Webb (Eds.). 2010. TF–IDF. Springer US, Boston,
MA, 986–987. https://doi.org/10.1007/978-0-387-30164-8_832

[36] Amit Singhal et al. 2001. Modern information retrieval: A brief overview. IEEE
Data Eng. Bull. 24, 4 (2001), 35–43.

[37] Jeongju Sohn, Gabin An, Jingun Hong, Dongwon Hwang, and Shin Yoo. 2021.
Assisting Bug Report Assignment Using Automated Fault Localisation: An In-
dustrial Case Study. In 2021 14th IEEE Conference on Software Testing, Verification
and Validation (ICST). IEEE, 284–294.

[38] Stephen W Thomas, Hadi Hemmati, Ahmed E Hassan, and Dorothea Blostein.
2014. Static test case prioritization using topic models. Empirical Software
Engineering 19, 1 (2014), 182–212.

[39] Yabin Wang, Ruizhi Gao, Zhenyu Chen, W Eric Wong, and Bin Luo. 2014. WAS:
A weighted attribute-based strategy for cluster test selection. Journal of Systems
and Software 98 (2014), 44–58.

[40] Li Weishi and Xiaoguang Mao. 2014. Alleviating the impact of coincidental
correctness on the effectiveness of sfl by clustering test cases. In 2014 Theoretical
Aspects of Software Engineering Conference. IEEE, 66–69.

[41] William E Winkler. 1990. String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage. (1990).

[42] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

[43] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. 2009. Clustering
Test Cases to Achieve Effective and Scalable Prioritisation Incorporating Expert
Knowledge. In Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis (Chicago, IL, USA) (ISSTA ’09). Association for Computing
Machinery, New York, NY, USA, 201–212.

[44] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with
hypergraphs: Clustering, classification, and embedding. Advances in neural
information processing systems 19 (2006), 1601–1608.

https://doi.org/10.1007/978-0-387-30164-8_832

	Abstract
	1 Introduction
	2 Measuring Similarity between Test Breakages
	2.1 Static Information
	2.2 Historical Information
	2.3 Dynamic Information

	3 Learning a Unified Classifier
	4 Experimental Setup on SAP HANA
	4.1 Research Questions
	4.2 Evaluation Dataset Construction
	4.3 Configuration and Implementation Details
	4.4 Evaluation Metrics

	5 Evaluation Results and Analysis
	5.1 RQ1: Effectiveness of Similarity Functions
	5.2 RQ2: Uniqueness of Similarity Functions
	5.3 RQ3: Effectiveness of Classification Model

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

